
SoLoud Audio Engine

Jari Komppa
May 21, 2014

Contents

1 Introduction 2
1.1 How Easy? . 2
1.2 How Free? . 2
1.3 How Powerful? . 3
1.4 There’s a Catch, Right? . 3

2 Legal 4
2.1 SoLoud Proper . 4
2.2 OGG Support . 4
2.3 Speech Synthesizer . 4
2.4 Fast Fourier Transform (FFT) . 5
2.5 Sfxr . 5
2.6 Libmodplug . 6

3 Quick Start 7
3.1 Download SoLoud . 7
3.2 Add files to your project . 7
3.3 Include files . 7
3.4 Variables . 7
3.5 Initialize SoLoud . 7
3.6 Set up sound sources . 8
3.7 Play sounds . 8
3.8 Take control of the sound . 8
3.9 Cleanup . 8
3.10 Enjoy . 8

4 Premake 9

5 Concepts 10
5.1 Back end . 10
5.2 Channel . 10
5.3 Stream . 10
5.4 Clipping . 10
5.5 Sample . 11
5.6 Sample Rate . 11
5.7 Hz . 11
5.8 Play Speed . 12
5.9 Relative Play Speed . 12
5.10 Resampling . 12
5.11 Pan . 12
5.12 Handle . 12
5.13 Sound Source and Instance . 12
5.14 Latency . 13
5.15 Filter . 13
5.16 Mixing Bus . 13

6 Frequently Asked Questions 15
6.1 What does it play? . 15
6.2 What dependencies does it have? . 15

SoLoud Audio Engine - http://soloud-audio.com 1

6.3 Is there a DLL / C-Interface? . 15
6.4 What’s the animal in the logo? . 15
6.5 Is there a mailing list? . 15
6.6 Are these real questions? . 15

7 Examples 16
7.1 simplest . 16
7.2 multimusic . 16
7.3 piano . 16
7.4 mixbusses . 17
7.5 env . 17

8 “C”-api / DLL 18
8.1 Codegen . 18
8.2 API . 18

9 Core: Basics 20
9.1 SoLoud::Soloud Object . 20
9.2 Soloud.play() . 20
9.3 Soloud.seek() . 20
9.4 Soloud.stop() . 21
9.5 Soloud.stopAll() . 21
9.6 Soloud.stopSound() . 21
9.7 Soloud.setGlobalVolume() / Soloud.getGlobalVolume() 21
9.8 Soloud.setPostClipScaler() / Soloud.getPostClipScaler() 21

10 Core: Attributes 22
10.1 Soloud.getVolume() / Soloud.setVolume() . 22
10.2 Soloud.getPan() / Soloud.setPan() . 22
10.3 Soloud.setPanAbsolute() . 22
10.4 Soloud.getSamplerate() / Soloud.setSamplerate() 22
10.5 Soloud.getRelativePlaySpeed() / Soloud.setRelativePlaySpeed() 23
10.6 Soloud.getProtectChannel() / Soloud.setProtectChannel() 23
10.7 Soloud.getPause() / Soloud.setPause() . 23
10.8 Soloud.setPauseAll() . 23
10.9 Soloud.setFilterParameter() . 24
10.10Soloud.getFilterParameter() . 24

11 Core: Faders 25
11.1 Overview . 25
11.2 Soloud.fadeVolume() . 25
11.3 Soloud.fadePan() . 25
11.4 Soloud.fadeRelativePlaySpeed() . 25
11.5 Soloud.fadeGlobalVolume() . 26
11.6 Soloud.schedulePause() . 26
11.7 Soloud.scheduleStop() . 26
11.8 Soloud.oscillateVolume() . 26
11.9 Soloud.oscillatePan() . 26
11.10Soloud.oscillateRelativePlaySpeed() . 27
11.11Soloud.oscillateGlobalVolume() . 27
11.12Soloud.fadeFilterParameter() . 27
11.13Soloud.oscillateFilterParameter() . 27

12 Core: Misc 28

SoLoud Audio Engine - http://soloud-audio.com 2

12.1 Soloud.getStreamTime() . 28
12.2 Soloud.isValidChannelHandle() . 28
12.3 Soloud.getActiveVoiceCount() . 29
12.4 Soloud.setGlobalFilter() . 29
12.5 Soloud.calcFFT() . 29
12.6 Soloud.getWave() . 29
12.7 Soloud.getVersion() . 30

13 SoLoud::AudioSource 31
13.1 AudioSource.setLooping() . 31
13.2 AudioSource.setFilter() . 31
13.3 AudioSource.setSingleInstance() . 31

14 SoLoud::Wav 32
14.1 Wav.load() . 32
14.2 Wav.loadMem() . 32

15 SoLoud::WavStream 33
15.1 WavStream.load() . 33

16 SoLoud::Speech 34
16.1 Speech.setText() . 34

17 SoLoud::Sfxr 35
17.1 Sfxr.loadPreset() . 35
17.2 Sfxr.loadParams() . 35

18 SoLoud::Modplug 37
18.1 Modplug.load() . 37

19 Creating New Audio Sources 38
19.1 AudioSource class . 38
19.2 AudioSource.createInstance() . 38
19.3 AudioSourceInstance class . 38
19.4 AudioSourceInstance.getAudio() . 39
19.5 AudioSourceInstance.hasEnded() . 39
19.6 AudioSourceInstance.seek() . 39
19.7 AudioSourceInstance.rewind() . 39

20 SoLoud::Bus 40

21 SoLoud::Filter 41
21.1 Filter class . 41
21.2 FilterInstance class . 41
21.3 FilterInstance.initParams . 42
21.4 FilterInstance.updateParams . 42
21.5 FilterInstance.filter() . 42
21.6 FilterInstance.filterChannel() . 42
21.7 FilterInstance.getFilterParameter() . 42
21.8 FilterInstance.setFilterParameter() . 43
21.9 FilterInstance.fadeFilterParameter() . 43
21.10FilterInstance.oscillateFilterParameter() . 43

22 SoLoud::BiquadResonantFilter 44

SoLoud Audio Engine - http://soloud-audio.com 3

23 SoLoud::EchoFilter 45

24 SoLoud::FFTFilter 46

25 SoLoud::LofiFilter 47

26 Back-ends 48
26.1 Soloud.postinit() . 48
26.2 Soloud.mix() . 48
26.3 Soloud.mBackendData . 48
26.4 Soloud.mLockMutexFunc / Soloud.mUnlockMutexFunc 48
26.5 Soloud.mMutex . 49
26.6 Soloud.mBackendCleanupFunc . 49
26.7 Different back-ends . 49

SoLoud Audio Engine - http://soloud-audio.com 4

1 Introduction

SoLoud is an easy to use, free, portable c/c++ audio engine for games.

1.1 How Easy?

The engine has been designed to make simple things easy, while not making harder things
impossible. Here’s a code snippet that initializes the library, loads a sample and plays it:

// Declare some var i ab le s
SoLoud : : Soloud soloud ; // Engine core
SoLoud : :Wav sample ; // One sample

// I n i t i a l i z e SoLoud (automatic back−end se lec t i on)
soloud . i n i t () ;

sample . load (”pew_pew.wav”) ; // Load a wave f i l e
soloud . play (sample) ; // Play i t

The primary form of use the interface is designed for is “fire and forget” audio. In many games,
most of the time you don’t need to modify a sound’s parameters on the fly - you just find an
event, like an explosion, and trigger a sound effect. SoLoud handles the rest.

If you need to alter some aspect of the sound after the fact, the “play” function returns a handle
you can use. For example:

in t handle = soloud . play (sample) ; // Play the sound
soloud . setVolume (handle , 0.5 f) ; // Set volume ; 1.0 f i s ”normal”
soloud . setPan (handle , −0.2 f) ; // Set pan ; −1 i s le f t , 1 i s r i g h t
soloud . setRelat ivePlaySpeed (handle , 0.9 f) ; // Play a b i t slower ; 1.0 f i s normal

If the sound doesn’t exist anymore (either it’s ended or you’ve played so many sounds at once
it’s channel has been taken over by some other sound), the handle is still safe to use - it just
doesn’t do anything.

There’s also a pure “C” version of the whole API which can even be used from non-c languages
by using SoLoud as an DLL.

1.2 How Free?

SoLoud is released under the ZLib/LibPNG license. That means, among other things, that:

• You can use it in free or commercial applications as much as you want.
• You can modify it. (But you don’t need to).
• You don’t need to give the changes back. (But you can).
• You don’t need to release the source code. (But you can).
• You don’t need to add a splash screen. (But you can).
• You don’t need to mention it in your printed manual. (But you can).

SoLoud Audio Engine - http://soloud-audio.com 5

Basically the only things the license forbids are suing me, or claiming that you made SoLoud. If
you redistribute the source code, the license needs to be there. But not with the binaries.

Parts of the SoLoud package were not made by me, and those either have a similar license, or
more permissive (such as Unlicense, CC0, WTFPL or Public Domain).

1.3 How Powerful?

While SoLoud’s usage has been designed to be very easy, it’s still packed with powerful func-
tionality. Some of the features include:

• Multiple voices, playing different or even the same sound multiple times on top of each
other.

• Adjustable play speed, volume and pan.
• Faders for all of the attributes (fade out for 2 seconds, then stop, for instance).
• Filter interface and ready filters for low/high pass, echo, etc for real-time modification
of audio.

• Mixing busses for grouping of audio into different uses and adjusting their attributes in
one go.

• Gapless looping.
• Playing several ogg streams at once.
• Sound effects synthesizer.
• Modplug library capable of playing various multi-channel music formats (including mod,
s3m, it, xm, mid, abc).

• Easy cleanup.

1.4 There’s a Catch, Right?

SoLoud quite probably doesn’t have all the features you’d find in a commercial library like
FMOD or WWISE. There’s no artist tools or engine integration. There’s no 3d audio. Output is,
currently, limited to stereo.

It quite probably isn’t as fast. As of this writing, it has no specialized assembler optimizations,
for any platform.

It definitely doesn’t come with the support you get from a commercial library.

If you’re planning to make a multi-million budgeted console game, this library is (probably) not
for you. Feel free to try it though =)

SoLoud Audio Engine - http://soloud-audio.com 6

2 Legal

SoLoud, like everything else, stands on the shoulders of giants; however, care has been taken to
only incorporate source code that is under liberal licenses, namely ZLib/LibPNG, CC0 or public
domain, or similar, like WTFPL or Unlicense, where you don’t need to include mention of the
code in your documentation or splash screens or any such nonsense.

2.1 SoLoud Proper

SoLoud proper is licensed under the ZLib/LibPNG license. The code is a clean-room implemen-
tation with no outside sources used.

SoLoud audio engine
Copyright (c) 2013 Ja r i Komppa

This software i s provided ’as-is’, without any express or implied
warranty . In no event w i l l the authors be held l i a b l e for any damages
a r i s i n g from the use of th i s software .

Permiss ion i s granted to anyone to use th i s software for any purpose ,
inc lud ing commercial app l i cat ions , and to a l t e r i t and r ed i s t r i bu te i t
f ree ly , subject to the fo l lowing r e s t r i c t i o n s :

1. The o r i g i n of th i s software must not be misrepresented ; you must not
claim that you wrote the o r i g i n a l software . I f you use th i s software
in a product , an acknowledgment in the product documentation would be
appreciated but i s not required .

2. Altered source ver s ions must be p l a i n l y marked as such , and must
not be misrepresented as being the o r i g i n a l software .

3. This not ice may not be removed or altered from any source
d i s t r i b u t i o n .

2.2 OGG Support

The OGG support in the Wav and WavStream sound sources is based on stb_vorbis by Sean
Barrett, and it’s in the public domain. You can find more information (and latest version) at
http://nothings.org/stb_vorbis/

2.3 Speech Synthesizer

The speech synth is based on rsynth by the late Nick Ing-Simmons (et al). He described the legal
status as:

This i s a text to speech system produced by
in teg ra t i ng var ious pieces of code and tab les
of data , which are a l l (I bel ieve) in the
public domain .

SoLoud Audio Engine - http://soloud-audio.com 7

http://everythingisaremix.info/
http://nothings.org/stb_vorbis/

Since then, the rsynth source code has passed legal checks by several open source organizations,
so it “should” be pretty safe.

The primary copyright claims seem to have to do with text-to-speech dictionary use, which I’ve
removed completely.

I’ve done some serious refactoring, clean-up and feature removal on the source, as all I need is
“a” free, simple speech synth, not a “good” speech synth. Since I’ve removed a bunch of stuff,
this is probably safer public domain release than the original.

I’m placing my changes in public domain as well, or if that’s not acceptable for you, then CC0:
http://creativecommons.org/publicdomain/zero/1.0/.

The SoLoud interface files (soloud_speech.*) are under the same ZLib/LibPNG license as the
other SoLoud bits.

2.4 Fast Fourier Transform (FFT)

FFT calculation is provided by a fairly simple implementation by Stephan M. Bernsee, under the
Wide Open License:

COPYRIGHT 1996 Stephan M. Bernsee <smb [AT] dspdimension [DOT] com>

The Wide Open License (WOL)

Permiss ion to use , copy , modify , d i s t r i bu t e and s e l l th i s software and i t s
documentation for any purpose i s hereby granted without fee , provided that
the above copyr ight not ice and th i s l i cense appear in a l l source copies .
THIS SOFTWARE I S PROVIDED ”AS␣IS” WITHOUT EXPRESS OR IMPLIED WARRANTY OF
ANY KIND . See http : //www. dspguru .com/wol .htm for more information .

2.5 Sfxr

The sfxr sound effects synthesizer is by Tomas Pettersson, re-licensed under zlib/libpng license
by permission.

Copyright (c) 2014 Ja r i Komppa
Based on code (c) by Tomas Pettersson , re−l i censed under z l i b by permiss ion

This software i s provided ’as-is’, without any express or implied
warranty . In no event w i l l the authors be held l i a b l e for any damages
a r i s i n g from the use of th i s software .

Permiss ion i s granted to anyone to use th i s software for any purpose ,
inc lud ing commercial app l i cat ions , and to a l t e r i t and r ed i s t r i bu te i t
f ree ly , subject to the fo l lowing r e s t r i c t i o n s :

1. The o r i g i n of th i s software must not be misrepresented ; you must not
claim that you wrote the o r i g i n a l software . I f you use th i s software
in a product , an acknowledgment in the product documentation would be
appreciated but i s not required .

2. Altered source ver s ions must be p l a i n l y marked as such , and must not be
misrepresented as being the o r i g i n a l software .

3. This not ice may not be removed or altered from any source

SoLoud Audio Engine - http://soloud-audio.com 8

http://creativecommons.org/publicdomain/zero/1.0/

d i s t r i b u t i o n .

2.6 Libmodplug

The branch of libmodplug that is used in SoLoud was declared public domain. Authors include:

• Olivier Lapicque - olivierl@jps.net
• Markus Fick - webmaster@mark-f.de
• Adam Goode - adam@evdebs.org
• Jake Stine - air@divent.org
• Peter Grootswagers - pgrootswagers@planet.nl
• Marco Trillo - toad@arsystel.com
• Kenton Varda - temporal@gauge3d.org

with some fixes modifications by Jari Komppa, to work with SoLoud.

SoLoud Audio Engine - http://soloud-audio.com 9

mailto:olivierl@jps.net
mailto:webmaster@mark-f.de
mailto:adam@evdebs.org
mailto:air@divent.org
mailto:pgrootswagers@planet.nl
mailto:toad@arsystel.com
mailto:temporal@gauge3d.org

3 Quick Start

3.1 Download SoLoud

First, you need to download SoLoud sources. You can find the downloads on the http://
soloud-audio.com/download.html page.

3.2 Add files to your project

You can go the lazy way and just add all of the sources to your project, or you can copy the
things you need to a single directory and include those. You’ll need the core files, and quite
likely the wav files. If you need the speech synth, include those, too.

There may be a pre-built static library that you can use. You can use that, too. Note that the
Windows DLL only exports the “C” API, which may not be what you want.

There’s also a premake4 script if you want to go that way.

3.3 Include files

In order to use a certain feature of SoLoud, you need to include its include file. You might have,
for instance:

#include ”soloud.h”
#include ”soloud_wav.h”

3.4 Variables

You need at least the SoLoud engine core, and one or more of the sound source variables. If
you’re using five different sound effect wav files, you need five SoLoud::Wav objects. You can
play one object any number of times, even on top of each other.

Where to place these is up to you. Globals work, as do allocation from heap, including in a class
as members, etc.

SoLoud : : Soloud gSoloud ;
SoLoud : :Wav gWave;

3.5 Initialize SoLoud

In your application, once you have your framework up (for instance after your SDL_Init call),
include a call to initialize SoLoud.

gSoloud . i n i t () ;

The call has a bunch of optional parameters if you’d rather pick the replay back-end and its
parameters yourself; the default should work for most cases.

SoLoud Audio Engine - http://soloud-audio.com 10

http://soloud-audio.com/download.html
http://soloud-audio.com/download.html

3.6 Set up sound sources

This step varies from one sound source to another, but basically you’ll load your wave files here.

gWave. load (”pew_pew.wav”) ;

3.7 Play sounds

Now you’re ready to play the sounds. Place playing commands wherever you need sound to be
played.

gSoloud . play (gWave) ;

Note that you can play the same sound several times, and it doesn’t cut itself off.

3.8 Take control of the sound

You can adjust various things about the sound you’re playing if you take the handle.

in t x = gSoloud . play (gWave) ;
gSoloud . setPan (x , −0.2 f) ;

Read the soloud.h header file (or this documentation) for further things you can do.

3.9 Cleanup

After you’ve done, remember to clean up. If you don’t, the audio thread may do stupid things
while the application is shutting down.

gSoloud . de in i t () ;

3.10 Enjoy

And you’re done!

SoLoud Audio Engine - http://soloud-audio.com 11

4 Premake

SoLoud comes with a premake4 script. If you want to build SoLoud as static library, instead of
including the source files in your project, this can be handy.

Premake can be downloaded from http://industriousone.com/premake.

Unfortunately, premake4 cannot magically figure out where your libraries may be installed, so
you may have to edit the premake4.lua file. The lines to edit can be found at the very beginning
of the file, with the following defaults:

l o ca l sd l_ root = ”/libraries/sdl”
l o ca l portmidi_root = ”/libraries/portmidi”
l o ca l dxsdk_root = ”C:/Program␣Files␣(x86)/Microsoft␣...”
l o ca l portaudio_root = ”/libraries/portaudio”
l o ca l openal_root = ”/libraries/openal”

You will most likely want to edit at least the sdl_root variable. After your edits, you can run
premake4 to generate makefiles or the IDE project files of your preference, such as:

premake4 vs2010

The current version (4.3) supports codeblocks, codelite, vs2002, vs2003, vs2005, vs2008, vs2010,
xcode3 and gnu makefiles (gmake). New version with at least vs2012 support is coming soon (as
of this writing).

If you wish to use portmidi with the piano example, run premake with an additional parameter:

premake4 −−with−portmidi vs2010

If you wish to include the xaudio2 back-end, use the parameter:

premake4 −−with−xaudio2 vs2010

The back-end is not included by default due to the requirement of xaudio2.lib.

To include libmodplug, yet another parameter is needed:

premake4 −−with−l ibmodplug vs2010

SoLoud Audio Engine - http://soloud-audio.com 12

http://industriousone.com/premake

5 Concepts

5.1 Back end

SoLoud itself “only” performs audio mixing and some resource handling. For it to be useful,
it needs one or more sound source and a back end. Some other audio systems use the term
‘sink’ for the back-ends. Examples of back-ends would be winmm, portaudio, wasapi and SDL
audio. SoLoud comes with several back-ends, and is designed to make back-ends relatively easy
to implement.

Different back-ends have different characteristics, such as how much latency they introduce.

5.2 Channel

One audio stream can contain one or more channels. Typical audio sources are either mono
(containing one channel) or stereo (containing two channels), but surround sound audio sources
may practically have any number of channels.

In module music (such as mod, s3m, xm, it), “channel” means one of the concurrent sounds
played, regardless of speaker configuration. Confusing, yes.

5.3 Stream

SoLoud can play audio from several sound sources at once (or, in fact, several times from the
same sound source at the same time). Each of these sound instances is a “stream”. The number
of concurrent streams is limited, as having unlimited streams would cause performance issues,
as well as lead to unnecessary clipping.

The default number of concurrent streams - maximum number of “voices” - is 64, but this can
be adjusted via a defined constant in the soloud.h file. The hard maximum number is 4096, but
if more are required, SoLoud can be modified to support more. But seriously, if you need more
than 4096 sounds at once, you’re probably going to make some serious changes in any case.

If all channels are already playing and the application requests another sound to play, SoLoud
finds the oldest sound and kills it. Since this may be your background music, you can protect
channels from being killed by using the soloud.setProtect call.

5.4 Clipping

Audio hardware always has a limited dynamic range. If you think of a signed 16-bit variable, for
instance, you can only store values from -32k to +32k in it; if you try to put values outside this
range in, things tend to break. Same goes for audio.

SoLoud handles all audio as floats, but performs clipping before passing the samples out, so
all values are in the -1..1 range. There’s two ways SoLoud can perform the clipping; the most
straightforward is simply to set all values outside this range to the border value, or alternatively
a roundoff calculation can be performed, which “compresses” the loud sounds. The more quiet
sounds are largely unchanged, while the loud end gets less precision. The roundoff clipper is
used by default.

SoLoud Audio Engine - http://soloud-audio.com 13

Figure 5.1: Results of different clippers

The roundoff clipper does, however, alter the signal and thus “damages” the sound. A more
proper way of doing things would be to use the basic clipper and adjust the global volume to
avoid clipping. The roundoff clipper, however, is easier to use.

5.5 Sample

The real world has continuous signals, which would require infinite amount of storage to store
(unless you can figure out some kind of complicated mathematical formula that represents the
signal). So, we store discrete samples of signals instead. These samples have traditionally been
8, 16 or 24 bit, but high-end audio is tending towards floating point samples.

SoLoud also uses floating point samples internally. First and foremost, it makes everything much
simpler, and second, modern computing devices have become fast enough that this is not really
a performance issue anymore.

Floating point samples also take more space than, for instance, 16 bit samples, but memory and
storage sizes have also grown enough to make this a feasible approach. Nothing stops the audio
sources from keeping data in a more “compressed” format and performing on-the-fly conversion
to float, if memory requirements are a concern.

5.6 Sample Rate

The sample rate represents the number of samples used, per second. Typical sample rates are
8000Hz, 22050Hz, 44100Hz and 48000Hz. Higher the sample rates mean clearer sound, but also
bigger files, more memory and higher processing power requirements.

5.7 Hz

Hertz, SI unit of frequency. 1Hz means “once per second”, 10Hz means “10 times per second”,
and 192kHz means “192000 times per second”.

SoLoud Audio Engine - http://soloud-audio.com 14

5.8 Play Speed

In addition to a base sample rate, which represents the “normal” playing speed, SoLoud includes
a “relative play speed” option. This simply changes the sample rate. However, if you replace
your sounds with something that has a different “base” sample rate, using the relative play
speed will retain the effect of playing the sound slower (and lower) or faster (and higher).

5.9 Relative Play Speed

SoLoud lets you change the relative play speed of samples. Please note that asking for a higher
relative play speed is more expensive than a lower one.

5.10 Resampling

SoLoud has to perform resampling when mixing. In an ideal case, all of the sources and the
destination sample rate are the same, and no resampling is needed, but this is often not true.

Currently, SoLoud supports “point sample” resampling, which means it simply skips or repeats
samples as needed, as well as “linear interpolation”, which calculates linear interpolation of
samples.

Higher quality resamplers are planned.

5.11 Pan

Where the sound is coming from in the stereo sound, ranging from left speaker only to right
speaker only. SoLoud uses an algorithm to calculate the left/right channel volume so that the
overall volume is retained across the field. You can also set the left/right volumes directly, if
needed.

5.12 Handle

SoLoud uses throwaway handles to control sounds. The handle is an integer, and internally
tracks the channel and sound id, as well as an “uniqueness” value.

If you try to use a handle after the sound it represents has stopped, the operation is quietly
discarded (or if you’re requesting information, some kind of generic value is returned). You can
also query the validity of a handle.

5.13 Sound Source and Instance

SoLoud uses two kinds of classes for the sounds. Sound sources contain all the information
related to the sound in question, such as wave sample data, while sound instances contain
information about an “instance” of the sound.

As an analogue, if you think of an old vinyl record, the sound source is the record, and you
can put as many playheads - the instances - on the record. All of the playheads can also move
at different speeds, output to a different pan position and volume, as well as different filter
settings.

SoLoud Audio Engine - http://soloud-audio.com 15

5.14 Latency

Audio latency generally means the time it takes from triggering a sound to the sound actually
coming out of the speakers. The smaller the latency, the better.

Unfortunately, there’s always some latency. The primary source of latency (that a programmer
can have any control over) is the size of audio buffer. Generally speaking, the smaller the
buffer, the lower the latency, but at the same time, the smaller the buffer, the more likely
the system hits buffer underruns (ie, the play head marches on but there’s no data ready to be
played) and the sound breaks down horribly.

Assuming there’s no other sources of latency (and there quite likely is), with 2048 sample buffer
and 44100Hz playback, the latency is around 46 milliseconds, which is tolerable in most cases.
A 100ms latency is already easily noticeable.

5.15 Filter

Audio streams can also be modified on the fly for various effects. Typical uses are different
environmental effects such as echoes or reverb, or low pass (bassy sound) / high pass (tinny
sound) filters, but basically any kind of modification can be done; the primary limitations are
processor power, imagination, and developer’s skill in digital signal processing.

SoLoud lets you hook several filters to a single audio stream, as well as to the global audio
output.

5.16 Mixing Bus

In addition to mixing audio streams together at the “global” level, SoLoud includes mixing busses
which let you mix together groups of audio streams. These serve several purposes.

Speech

Bus

Music

Bus

Bus

Sfx Global Out

Figure 5.2: Mix busses concept

The most typical use would be to let the user change the volume of different kinds of audio
sources - music, sound effects, speech. In this case, you would have one mixing bus for each of

SoLoud Audio Engine - http://soloud-audio.com 16

these audio source groups, and simply change the volume on the mixing bus, instead of hunting
down every sound separately.

When using environmental effects filters, you most likely won’t want the background music to
get filtered; the easiest way to handle this is to apply the filters to the mixing bus that plays
the sound effects. This will also save on processing power, as you don’t need to apply the
environmental audio filters on every sound effect separately.

It’s also possible that you have some very complex audio sources, such as racing cars. In this
case it makes sense to place all the audio streams that play from one car into a mixing bus, and
then adjust the panning (or, eventually, 3d position) of the mixing bus.

SoLoud Audio Engine - http://soloud-audio.com 17

6 Frequently Asked Questions

6.1 What does it play?

Currently, SoLoud includes support for uncompressed 8 and 16 bit RIFF Wav files, as well as
Ogg Vorbis files. Both of these only support a limited feature set of said formats, so you may
experience some issues with strange files.

Additionally, SoLoud comes with a speech synthesizer and a retro sound effect synthesizer Sfxr.

Finally, SoLoud includes libmodplug, through which it can play 669, abc, amf, ams, dbm, dmf,
dsm, far, it, j2b, mdl, med, mid, mod, mt2, mtm, okt, pat, psm, ptm, s3m, stm, ult, umx, xm,
as well as wider support for wav files than the stand-alone wav audio source. (Due to the size
of libmodplug, SoLoud can be compiled without it).

The interface for audio sources is relatively simple, so new formats and noise generators, as
well as audio filters, can be made.

An example sin/saw/triangle/square generator is also available, as part of the “piano” example.

6.2 What dependencies does it have?

There’s no external library dependencies (apart from stdlib). However, to get audio out of
your speakers, a back-end is needed. Back-ends that currently exist include SDL, windows
multimedia, oss and portaudio, and SoLoud has been designed so that making new back-ends
would be as painless as possible.

6.3 Is there a DLL / C-Interface?

Yes! This DLL can be used from non-c++ environments through the “C” interface.

6.4 What’s the animal in the logo?

A fennec fox. Google it. They’re cute!

6.5 Is there a mailing list?

There’s a google group, at http://groups.google.com/d/forum/soloud

Main development occurs on GitHub, athttps://github.com/jarikomppa/soloud
and the issue tracker is in use.

Finally, there’s #soloud on ircnet, if you want to pop by.

6.6 Are these real questions?

Surprisingly, yes.

SoLoud Audio Engine - http://soloud-audio.com 18

http://groups.google.com/d/forum/soloud
https://github.com/jarikomppa/soloud

7 Examples

SoLoud package comes with a few simple examples. These can be found under the ‘demos’
directory. Pre-built binaries for Windows can also be found in the ‘bin’ directory.

7.1 simplest

The simplest example initializes SoLoud, and uses the speech synthesizer to play some sound.
Once the sound has finished, the application cleans up and quits.

This example also uses SoLoud’s cross-platform thread library to sleep while waiting for the
sound to end.

7.2 multimusic

The multimusic example loads two OGG music loops as well as sound effects. You can use the
keyboard keys 1 through 0 for various effects:

Key Effect

1 Play random sfxr “explosion” preset

2 Play random sfxr “blip” preset

3 Play random sfxr “coin” preset

4 Play random sfxr “hurt” preset

5 Play random sfxr “jump” preset

6 Play random sfxr “laser” preset

7 Fade music 1 in and music 2 out

8 Fade music 2 in and music 1 out

9 Fade music relative play speed way down

0 Fade music relative play speed to normal

7.3 piano

This example is a simple implementation of a playable instrument. The example also includes
a simple waveform generator (soloud_basicwave.cpp/h), which can produce square, saw, sine
and triangle waves. If compiled to use portmidi, you can also use a midi keyboard to drive the
example.

Key(s) Effect

1234.. Play notes (“black keys”)

qwer.. Play notes (“white keys”)

asdf.. Select waveform

SoLoud Audio Engine - http://soloud-audio.com 19

zxcv.. Selects filters.

l Lo-fi filter

Speech synthesizer and on-screen text describe what different keys do when pressed. Have fun
experimenting!

7.4 mixbusses

The mixbusses example demonstrates the use of mixing busses. You can use “qw”, “as” and
“zx” keys to adjust volume of different busses.

Speech

Bus

Music

Bus

Bus

Sfx Global Out

Figure 7.1: Mix busses concept

In case of this example, only one “music” and one “sfx” is played, but the idea is still the same.

7.5 env

The env demo is a non-interactive demo of how SoLoud could be used to play environmental
audio.

SoLoud Audio Engine - http://soloud-audio.com 20

8 “C”-api / DLL

In order to support non-c++ environments, SoLoud also has a “C” API.

All of the existing interfaces can be used via the “C” API, but features that require extending
SoLoud are not available.

8.1 Codegen

The API is automatically generated from the c++ sources via the codegen tool that is part of the
SoLoud sources. In most cases you won’t need to use the codegen yourself.

The codegen tool parses the SoLoud headers and generates the needed headers and wrapper
cpp code, as well as the DLL .def file.

8.2 API

The “C” API mirrors the c++ API.

If the c++ API functions have default parameters, two functions are generated: one without the
default parameters, and one with. The one where you can change the default parameters is
post-fixed Ex, such as Soloud_init and Soloud_initEx.

As an example, here’s a simple example in the C++ api:

SoLoud : : Soloud soloud ;
SoLoud : : Speech speech ;

speech . setText (”Hello␣c++␣api”) ;

soloud . i n i t (SoLoud : : Soloud : : CLIP_ROUNDOFF |
SoLoud : : Soloud : : ENABLE_VISUALIZATION)

soloud . setGlobalVolume (4) ;
soloud . play (speech) ;

// . . .

soloud . de in i t () ;

Converted to the “C” API, this becomes:

Soloud * soloud = Soloud_create () ;
Speech * speech = Speech_create () ;

Speech_setText (speech , ”Hello␣c-api”) ;

So loud_ in i tEx (soloud , SOLOUD_CLIP_ROUNDOFF | SOLOUD_ENABLE_VISUALIZATION ,
SOLOUD_AUTO, SOLOUD_AUTO, SOLOUD_AUTO) ;

Soloud_setGlobalVolume (soloud , 4) ;
Soloud_play (soloud , speech) ;

SoLoud Audio Engine - http://soloud-audio.com 21

// . . .

So loud_dein i t (soloud) ;

Speech_destroy (speech) ;
Soloud_destroy (soloud) ;

SoLoud Audio Engine - http://soloud-audio.com 22

9 Core: Basics

9.1 SoLoud::Soloud Object

In order to use SoLoud, you have to create a SoLoud::Soloud object. The object must be
cleaned up or destroyed before your back-end is shut down; the safest way to do this is to
call soloud.deinit() manually before terminating.

The object may be global, member variable, or even a local variable, it can be allocated from
the heap or the stack, as long as the above demand is met. If the back-end gets destroyed
before the back-end clean-up call is made, the result is undefined. As in, bad. Most likely, a
crash. Blue screens in Windows are not out of the question.

SoLoud : : Soloud * soloud = new SoLoud : : Soloud ; // object created
soloud−> i n i t () ; // back−end i n i t i a l i z a t i o n
. . .
soloud−>de in i t () ; // clean−up
delete soloud ; // t h i s c leans up too

Seriously: remember to call the cleanup function. The SoLoud object destructor also calls the
cleanup function, but if you perform your application’s tear-down in an unpredictable order
(such as having the SoLoud object be a global variable), the back-end may end up trying to use
resources that are no longer available. So, it’s best to call the cleanup function manually.

9.2 Soloud.play()

The play function can be used to start playing a sound source. The function has more than one
parameter, with typical default values set to most of them.

in t play (AudioSource &aSound ,
f l oa t aVolume = 1.0 f , // Fu l l volume
f l oa t aPan = 0.0 f , // Centered
in t aPaused = 0 , // Not paused
in t aBus = 0) ; // Primary bus

Unless you know what you’re doing, leave the aBus parameter to zero.

The play function returns a channel handle which can be used to adjust the parameters of
the sound while it’s playing. The most common parameters can be set with the play function
parameters, but for more complex processing you may want to start the sound paused, adjust
the parameters, and then un-pause it.

in t h = soloud . play (sound , 1 , 0 , 1) ; // s t a r t paused
soloud . setRelat ivePlaySpeed (h , 0.8 f) ; // change a parameter
soloud . setPause (h , 0) ; // unpause

9.3 Soloud.seek()

You can seek to a specific time in the sound with the seek function. Note that the seek operation
may be rather heavy, and some audio sources will not support seeking backwards at all.

SoLoud Audio Engine - http://soloud-audio.com 23

in t h = soloud . play (sound , 1 , 0 , 1) ; // s t a r t paused
soloud . seek (h , 3.8 f) ; // seek to 3.8 seconds
soloud . setPause (h , 0) ; // unpause

9.4 Soloud.stop()

The stop function can be used to stop a sound.

soloud . stop (h) ; // S i lence !

9.5 Soloud.stopAll()

The stop function can be used to stop all sounds. Note that this will also stop the protected
sounds.

soloud . s topA l l () ; // Total s i l ence !

9.6 Soloud.stopSound()

The stop function can be used to stop all sounds that were started through a certain sound
source. Will also stop protected sounds.

soloud . stopSound (duck) ; // s i l ence a l l the ducks

9.7 Soloud.setGlobalVolume() / Soloud.getGlobalVolume()

These functions can be used to get and set the global volume. The volume is applied before
clipping. Lowering the global volume is one way to combat clipping artifacts.

f l oa t v = soloud . getGlobalVolume () ; // get the current g loba l volume
soloud . setGlobalVolume (v * 0.5 f) ; // halve i t

Note that the volume is not limited to 0..1 range. Negative values may result in strange behavior,
while huge values will likely cause distortion.

9.8 Soloud.setPostClipScaler() / Soloud.getPostClipScaler()

These functions can be used to get and set the post-clip scaler. The scaler is applied after
clipping. Sometimes lowering the post-clip result sound volumemay be beneficial. For instance,
recording video with some video capture software results in distorted sound if the volume is too
high.

f l oa t v = soloud . getPos tC l ipSca le r () ; // get the current post−c l i p sca le r
soloud . se tPo s tC l i pSca le r (v * 0.5 f) ; // halve i t

Note that the scale is not limited to 0..1 range. Negative values may result in strange behavior,
while huge values will likely cause distortion.

SoLoud Audio Engine - http://soloud-audio.com 24

10 Core: Attributes

10.1 Soloud.getVolume() / Soloud.setVolume()

These functions can be used to get and set a sound’s current volume setting.

f l oa t v = soloud . getVolume (h) ; // Get current volume
soloud . setVolume (h , v * 2) ; // Double i t

Note that the volume is the “volume setting”, and the actual volume will depend on the sound
source. Namely, a whisper will most likely be more quiet than a scream, even if both are played
at the same volume setting.

If an invalid handle is given to getVolume, it will return 0.

10.2 Soloud.getPan() / Soloud.setPan()

These functions can be used to get and set a sound’s current pan setting.

f l oa t v = soloud . getPan (h) ; // Get current pan
soloud . setPan (h , v − 0 .1) ; // L i t t l e b i t to the l e f t

The range of the pan values is -1 to 1, where -1 is left, 0 is middle and and 1 is right. Setting
value outside this range may cause undefined behavior.

SoLoud calculates the left/right volumes from the pan to keep a constant volume; to set the
volumes directly, use setPanAbsolute.

If an invalid handle is given to getPan, it will return 0.

10.3 Soloud.setPanAbsolute()

These function can be used to set the left/right volumes directly.

soloud . setPanAbsolute (h , 1 , 1) ; // f u l l b l a s t

Note that this does not affect the value returned by getPan.

If an invalid handle is given to getPan, it will return 0.

10.4 Soloud.getSamplerate() / Soloud.setSamplerate()

These functions can be used to get and set a sound’s base sample rate.

f l oa t v = soloud . getSamplerate (h) ; // Get the base sample rate
soloud . setSamplerate (h , v * 2) ; // Double i t

Setting the value to 0 will cause undefined behavior, likely a crash.

SoLoud Audio Engine - http://soloud-audio.com 25

To adjust the play speed, while leaving the base sample rate alone, use setRelativePlaySpeed
instead.

If an invalid handle is given to getSamplerate, it will return 0.

10.5 Soloud.getRelativePlaySpeed() / Soloud.setRelativePlaySpeed()

These functions can be used to get and set a sound’s relative play speed.

f l oa t v = soloud . getRelat ivePlaySpeed (h) ; // Get r e l a t i v e play speed
soloud . setRelat ivePlaySpeed (h , v * 0.5 f) ; // Halve i t

Setting the value to 0 will cause undefined behavior, likely a crash.

Change the relative play speed of a sample. This changes the effective sample rate while leaving
the base sample rate alone.

Note that playing a sound at a higher sample rate will require SoLoud to request more samples
from the sound source, which will require more memory and more processing power. Playing
at a slower sample rate is cheaper.

If an invalid handle is given to getRelativePlaySpeed, it will return 1.

10.6 Soloud.getProtectChannel() / Soloud.setProtectChannel()

These functions can be used to get and set a sound’s protection state.

in t v = soloud . getProtectChannel (h) ; // Get the protect ion state
i f (v) soloud . setProtectChannel (h , 0) ; // Disab le i f protected

Normally, if you try to play more sounds than there are channels, SoLoud will kill off the oldest
playing sound to make room. This will most likely be your background music. This can be worked
around by protecting the sound.

If all sounds are protected, the result will be undefined.

If an invalid handle is given to getProtectChannel, it will return 0.

10.7 Soloud.getPause() / Soloud.setPause()

The setPause function can be used to pause, or unpause, a sound.

i f (soloud . getPause (h)) hum_si lent ly () ;
soloud . setPause (h , 0) ; // resumes playback

Note that even if a sound is paused, its channel may be taken over. Trying to resume a sound
that’s no longer in a channel doesn’t do anything.

If the handle is invalid, the getPause will return 0.

10.8 Soloud.setPauseAll()

The setPauseAll function can be used to pause, or unpause, all sounds.

SoLoud Audio Engine - http://soloud-audio.com 26

soloud . setPauseAl l (h , 0) ; // resumes playback of a l l channels

Note that this function will overwrite the pause state of all channels at once. If your game uses
this to pause/unpause the sound while the game is paused, do note that it will also pause/un-
pause any sounds that you may have paused/unpaused separately.

10.9 Soloud.setFilterParameter()

Sets a parameter for a live instance of a filter. The filter must support changing of live param-
eters; otherwise this call does nothing.

soloud . setF i l terParameter (h , 3 , FILTER : : CUTOFF, 1000);
// set h ’ s 3rd f i l t e r ’ s ” cutof f ” value to 1000

10.10 Soloud.getFilterParameter()

Gets a parameter from a live instance of a filter. The filter must support changing of live
parameters; otherwise this call returns zero.

f l oa t v = soloud . getF i l terParameter (h ,3 , FILTER : : CUTOFF) ;
// get h ’ s 3rd f i l t e r ’ s ” cutof f ” value

SoLoud Audio Engine - http://soloud-audio.com 27

11 Core: Faders

11.1 Overview

Faders are a convenient way of performing some common audio tasks without having to add
complex code into your application.

The most common use for the faders is to fade audio in or out, adding nice touches and polish.

Let’s say you’re exiting a bar and entering the street.

soloud . fadeVolume (bar_ambience , 0 , 2) ; // fade bar out in 2 seconds
soloud . scheduleStop (bar_ambience , 2) ; // stop the bar ambience af ter fadeout
street_ambience = soloud . play (cars , 0) ; // s t a r t s t reet ambience at 0 volume
soloud . setProtectChannel (street_ambience , 1) ; // protect i t
soloud . fadeVolume (street_ambience , 1 , 1.5 f) ; // fade s t reet in in 1.5

Or let’s say you’re quiting your game.

soloud . fadeGlobalVolume (0 , 1) ; // Fade out g loba l volume in 1 second

The faders are only evaluated once per mix function call - in other words, whenever the back
end requests samples from SoLoud, which is likely to be in chunks of 20-100ms, which is smoothly
enough for most uses.

The exception is volume (which includes panning), which gets interpolated on per-sample basis
to avoid artifacts.

The starting value for most faders is the current value.

11.2 Soloud.fadeVolume()

Smoothly change a channel’s volume over specified time.

soloud . fadeVolume (orchestra , 1 , 60) ; // The orchestra creeps in for a minute

The fader is disabled if you change the channel’s volume with setVolume()

11.3 Soloud.fadePan()

Smoothly change a channel’s pan setting over specified time.

soloud . setPan (racecar , −1); // set s t a r t value
soloud . fadePan (racecar , 1 , 0 .5) ; // Swoosh !

The fader is disabled if you change the channel’s panning with setPan() or setPanAbsolute()

11.4 Soloud.fadeRelativePlaySpeed()

Smoothly change a channel’s relative play speed over specified time.

SoLoud Audio Engine - http://soloud-audio.com 28

soloud . fadeRelat ivePlaySpeed (hal , 0.1 , 6) ; // Hal ’ s message slows down

The fader is disabled if you change the channel’s play speed with setRelativePlaySpeed()

11.5 Soloud.fadeGlobalVolume()

Smoothly change the global volume over specified time.

soloud . fadeGlobalVolume (0 , 2) ; // Fade everything out in 2 seconds

The fader is disabled if you change the global volume with setGlobalVolume()

11.6 Soloud.schedulePause()

After specified time, pause the channel

soloud . fadeVolume (jukebox , 0 , 2) ; // Fade out the music in 2 seconds
soloud . schedulePause (jukebox , 2) ; // Pause the music a f ter 2 seconds

The scheduler is disabled if you set the pause state with setPause() or setPauseAll().

11.7 Soloud.scheduleStop()

After specified time, stop the channel

soloud . fadeVolume (applause , 0 , 10) ; // Fade out the cheers for 10 seconds
soloud . scheduleStop (applause , 10) ; // Stop the sound af ter 10 seconds

There’s no way (currently) to disable this scheduler.

11.8 Soloud.oscillateVolume()

Set fader to oscillate the volume at specified frequency.

soloud . osc i l lateVolume (murmur , 0 , 0.2 , 5) ; // murmur comes and goes

The fader is disabled if you change the channel’s volume with setVolume()

11.9 Soloud.oscillatePan()

Set fader to oscillate the panning at specified frequency.

soloud . o sc i l l a tePan (ambulance , −1, 1 , 10) ; // Round and round i t goes

The fader is disabled if you change the channel’s panning with setPan() or setPanAbsolute()

SoLoud Audio Engine - http://soloud-audio.com 29

11.10 Soloud.oscillateRelativePlaySpeed()

Set fader to oscillate the relative play speed at specified frequency.

soloud . osc i l l a teRe la t i veP laySpeed (v iny l , 0.9 , 1.1 , 3) ; // Wobbly record

The fader is disabled if you change the channel’s play speed with setRelativePlaySpeed()

11.11 Soloud.oscillateGlobalVolume()

Set fader to oscillate the global volume at specified frequency.

soloud . osc i l lateGlobalVolume (0.5 , 1.0 , 0 . 2) ; // Go crazy

The fader is disabled if you change the global volume with setGlobalVolume()

11.12 Soloud.fadeFilterParameter()

Fades a parameter on a live instance of a filter. The filter must support changing of live param-
eters; otherwise this call does nothing.

soloud . fadeFi l terParameter (h ,3 , FILTER : : CUTOFF,1000 ,1) ;
// Fades h ’ s 3rd f i l t e r CUTOFF to 1000 in 1 second

11.13 Soloud.oscillateFilterParameter()

Oscillates a parameter on a live instance of a filter. The filter must support changing of live
parameters; otherwise this call does nothing.

soloud . setF i l terParameter (h ,3 , FILTER : : CUTOFF,500 ,1000 ,2);
// O s c i l l a t e s the h ’ s 3rd f i l t e r ’ s CUTOFF between 500 and 1000

SoLoud Audio Engine - http://soloud-audio.com 30

12 Core: Misc

12.1 Soloud.getStreamTime()

The getStreamTime function can be used to get the current play position, in seconds.

f l oa t t = soloud . getStreamTime (h) ; // get time
i f (t == hammertime) hammer () ;

Note that due to being a floating point value, playing a long stream may cause precision prob-
lems, and eventually cause the “time” to stop. This will happen in about 6 days. The precision
problems will start somewhat earlier.

Also note that the granularity is likely to be rather high (possibly around 45ms), so using this as
the sole clock source for animation will lead to rather low framerate (possibly around 20Hz).
To fix this, either use some other clock source and only sync with the stream time occasionally,
or use some kind of low-pass filter, such as..

mytime = (mytime * 9 + soloud . getStreamTime (h)) / 10;

While not perfect, that’s way better than using the stream time directly.

0

0,5

1

1,5

2

2,5

3

3,5

Real

Streamtime

Filtered

Figure 12.1: Low-pass filtered time values

12.2 Soloud.isValidChannelHandle()

The isValidChannelHandle function can be used to check if a handle is still valid.

SoLoud Audio Engine - http://soloud-audio.com 31

i f (! soloud . isVal idChannelHandle (h)) delete foobar ;

If the handle is invalid, the isValidChannelHandle will return 0.

12.3 Soloud.getActiveVoiceCount()

Returns the number of concurrent sounds that are playing at the moment.

i f (soloud . getActiveVoiceCount () == 0) enjoy_the_s i lence () ;

If the handle is invalid, the getActiveVoiceCount will return 0.

12.4 Soloud.setGlobalFilter()

Sets, or clears, the global filter.

soloud . s e tG l oba l F i l t e r (0 , &echochamber) ; // set f i r s t f i l t e r

Setting the global filter to NULL will clear the global filter. The default maximum number of
global filters active is 4, but this can be changed in a global constant in soloud.h (and rebuilding
SoLoud).

12.5 Soloud.calcFFT()

Calculates FFT of the currently playing sound (post-clipping) and returns a pointer to the result.

f l oa t * f f t = soloud . calcFFT () ;
in t i ;
for (i = 0; i < 256; i ++)

drawline (0 , i , f f t [i] * 32 , i) ;

The FFT data has 256 floats, from low to high frequencies.

SoLoud performs a mono mix of the audio, passes it to FFT, and then calculates the magnitude of
the complex numbers for application to use. For more advanced FFT use, SoLoud code changes
are needed.

The returned pointer points at a buffer that’s always around, but the data is only updated when
calcFFT() is called.

For the FFT to work, you also need to initialize SoLoud with the Soloud::ENABLE_VISUALIZATION
flag. Otherwise the source data for the FFT calculation will not be gathered.

12.6 Soloud.getWave()

Gets 256 samples of the currently playing sound (post-clipping) and returns a pointer to the
result.

f l oa t * wav = soloud . getWave () ;
in t i ;
for (i = 0; i < 256; i ++)

drawline (0 , i , wav[i] * 32 , i) ;

SoLoud Audio Engine - http://soloud-audio.com 32

The returned pointer points at a buffer that’s always around, but the data is only updated when
getWave() is called. The data is the same that is used to generate visualization FFT data.

For this function to work properly, you also need to initialize SoLoud with the Soloud::ENABLE_VISUALIZATION
flag. Otherwise the source data will not be gathered, and the result is undefined (probably
zero).

12.7 Soloud.getVersion()

Returns the version of the SoLoud library. Same as SOLOUD_VERSION macro. Mostly useful when
using the DLL, to check the DLL’s library version.

SoLoud Audio Engine - http://soloud-audio.com 33

13 SoLoud::AudioSource

All audio sources share some common functions. Some of the functionality depends on the audio
source itself; it may be that some parameter does not make sense for a certain audio source,
or it may be that it has not been implemented for other reasons.

For example, if you stream a live radio station, looping does not make much sense.

13.1 AudioSource.setLooping()

This function can be used to set a sample to play on repeat, instead of just playing once.

amenbreak . setLooping (1) ; // le t the beat play on

Note that some audio sources may not implement this behavior.

13.2 AudioSource.setFilter()

This function can be used to set or clear the filters that should be applied to the sounds gener-
ated via this audio source.

speech . s e t F i l t e r (0 , blackmai ler) ; // D i sgu i se the speech

Setting the filter to NULL will clear the filter. This will not affect already playing sounds. By
default, up to four filters can be applied. This value can be changed through a constant in the
soloud.h file.

13.3 AudioSource.setSingleInstance()

This function can be used to tell SoLoud that only one instance of this sound may be played at
the same time.

menuselect . se tS ing le In s tance (1) ; // Only play i t once , Sam

SoLoud Audio Engine - http://soloud-audio.com 34

14 SoLoud::Wav

The SoLoud::Wav class represents a wave sound effect. The source files may be in 8 or 16 bit
raw RIFF WAV files, or compressed Ogg Vorbis files.

The sounds are loaded and converted to float samples, which means that every second of a
44100Hz stereo sound takes about 350kB of memory. The good side is, after loading, these
samples are very lightweight, as their processing is mostly just a memory copy.

For lengthy samples like background music, you may want to use SoLoud::WavStream instead.

14.1 Wav.load()

The wav loader takes just one parameter, the file name:

void load (const char * aFilename) ; // F i l e to load

If loading fails, the sample will be silent.

SoLoud : :Wav boom;
boom. load (”boom.wav”) ;

If the loading function is called while there are instances playing, the result is undefined (most
likely a crash).

14.2 Wav.loadMem()

Alternate way of loading samples is to read from a memory buffer.

void loadMem(unsigned char *aMem, in t aLength) ; // Sample to load

If loading fails, the sample will be silent.

SoLoud : :Wav boom;
boom. loadMem(boomMemoryResource , boomMemoryResourceLength) ;

If the loading function is called while there are instances playing, the result is undefined (most
likely a crash).

SoLoud Audio Engine - http://soloud-audio.com 35

15 SoLoud::WavStream

The SoLoud::WavStream class represents a wave sound effect that is streamed off disk while
it’s playing. The source files may be in 8 or 16 bit raw RIFF WAV files, or compressed Ogg Vorbis
files.

The sounds are loaded in pieces while they are playing, which takes more processing power than
playing samples from memory, but they require much less memory.

For short or often used samples, you may want to use SoLoud::Wav instead.

15.1 WavStream.load()

The wav loader takes just one parameter, the file name:

void load (const char * aFilename) ; // F i l e to load

If loading fails, the sample will be silent.

SoLoud : : WavStream muzak ;
muzak . load (”elevator.ogg”) ;

If the loading function is called while there are instances playing, the result is undefined (most
likely a crash).

SoLoud Audio Engine - http://soloud-audio.com 36

16 SoLoud::Speech

The SoLoud::Speech class implements a simple Klatt-style formant speech synthesizer. It’s
barely legible, not really human-like, but it’s free, and it’s here.

Adjusting the speech synthesizer’s output with audio filters should allow for various voices,
which, along with subtitles, will let you add voice to your games cheaply.

For more serious use, feel free to study the source code and play with the various internal
parameters, as well as apply various filters to the sound.

For legal notes, please see the license page.

16.1 Speech.setText()

The setText function can be used to set the text to be spoken.

SoLoud : : Speech sp ;
sp . setText (”Hello␣world.␣␣You␣will␣be␣assimilated.”) ;

If the setText function is called while speech is playing, SoLoud stops any playing instances to
avoid crashing.

SoLoud Audio Engine - http://soloud-audio.com 37

17 SoLoud::Sfxr

The SoLoud::Sfxr is a “retro” sound effect synthesizer based on the original Sfxr by Tomas
Pettersson.

Figure 17.1: Sfxr interface

The original sfxr tool was designed to easily generate sound effects for Ludum Dare 48h games.
SoLoud includes the same engine built in, so you can (should you wish) make every coin, explo-
sion etc. sound different.

17.1 Sfxr.loadPreset()

You can simply tell Sfxr to use one of the presets (COIN, LASER, EXPLOSION, POWERUP, HURT,
JUMP, BLIP). Each of the presets has several random components, so you can get virtually un-
limited variations of each. (Not all variants sound good, though).

void loadPreset (in t aPresetNo , in t aRandSeed) ; // Preset to load

If loading fails, the effect will be silent.

SoLoud : : S fx r coin ;
coin . loadPreset (S fx r : : COIN , 3247);

17.2 Sfxr.loadParams()

Effect parameters can also be loaded from a configuration file saved from the sfxr tool.

SoLoud Audio Engine - http://soloud-audio.com 38

in t loadParams (const char * aFilename) ; // F i l e to load

If loading fails, the return is non-zero.

SoLoud : : S fx r boom;
boom. loadParams (”boom.sfx”) ;

SoLoud Audio Engine - http://soloud-audio.com 39

18 SoLoud::Modplug

The SoLoud::Modplug is a module-playing engine, capable of replaying wide variety of multi-
channel music (669, abc, amf, ams, dbm, dmf, dsm, far, it, j2b, mdl, med, mid, mod, mt2,
mtm, okt, pat, psm, ptm, s3m, stm, ult, umx, xm). It also loads wav files, and may support
wider support for wav files than the stand-alone wav audio source.

Due to its size, it’s possible to compile SoLoud without the modplug support.

The midi formats (.mid and .abc) require a library of instruments (patches) to be available.
One free set can be downloaded from the SoLoud downloads page. By default, the patches are
loaded from pat/ directory.

18.1 Modplug.load()

You tell modplug to load a file with the load function:

in t load (const char * aFilename) ; // F i l e to load

If loading fails, the return is non-zero.

SoLoud : : Modplug spacedeb ;
spacedeb . load (”spacedeb.mod”) ;

SoLoud Audio Engine - http://soloud-audio.com 40

19 Creating New Audio Sources

SoLoud is relatively easy to extend by creating new sound sources. Each sound source consists
of two parts: an audio source class, and an audio instance class.

Studying the existing audio sources’ source code, in addition to this chapter, will be helpful in
creating new ones.

19.1 AudioSource class

c las s Example : public AudioSource
{
public :

v i r tua l AudioInstance * create Instance () ;
} ;

The only mandatory member of an audio source is the createInstance function.

The audio source class is meant to contain all and any data that represents the sound in general
and can be reused by the instances; for instance, with wave files, the wave data is stored with
the audio source, while audio instances just read the data.

Note that there’s no setLooping() function - that’s inherited from AudioSource, and sets the
SHOULD_LOOP flag.

The audio source is also responsible for setting the mChannels and mBaseSamplerate values.
These values get copied to all of the instances of this audio source.

19.2 AudioSource.createInstance()

The createInstance function typically creates and returns its counterpart, the audio instance.
Usually it also gives a pointer to itself to the audio instance.

19.3 AudioSourceInstance class

c las s ExampleInstance : public AudioSourceInstance
{
public :

v i r tua l void getAudio (f l oa t * aBuffer , in t aSamples) ;
v i r tua l int hasEnded () ;
v i r tua l void seek (f l oa t aSeconds , f l oa t * mScratch , in t mScratchSize) ;
v i r tua l int rewind () ;

} ;

The getAudio and hasEnded methods are mandatory. Seek and rewind are optional.

The audio instance is meant as the “play head” for a sound source. Most of the data should be
in the audio source, while audio instance may contain more logic.

SoLoud Audio Engine - http://soloud-audio.com 41

19.4 AudioSourceInstance.getAudio()

SoLoud requests samples from the sound instance using the getAudio function. If the instance
generates more than one channel (i.e, stereo sound), the expected sample data first has the
first channel samples, then second channel samples, etc.

So, if 1024 samples are requested from a stereo audio source, the first 1024 floats should be for
the first channel, and the next 1024 samples should be for the second channel.

The getAudio function is also responsible for handling looping, if the audio source supports it.
See the implementations of existing sound sources for more details.

If the audio source runs out of data, the rest of the buffer should be set to zero.

19.5 AudioSourceInstance.hasEnded()

After mixing, SoLoud asks all audio instances whether they have ended, and if they have, it will
free the object and free the channel. Supporting looping will likely affect the implementation
of this function.

19.6 AudioSourceInstance.seek()

Optionally, you can implement a seek function. The base implementation will simply request
(and discard) samples from the sound source until the desired position has been reached; for
many sound sources, a smarter way exists.

19.7 AudioSourceInstance.rewind()

To enable the base implementation of seek to seek backwards from the current play position,
sound source may implement the rewind function. In most cases the rewind is easier to imple-
ment than actual smart seeking.

SoLoud Audio Engine - http://soloud-audio.com 42

20 SoLoud::Bus

The mixing busses are a special case of an audio stream. They are a kind of audio stream that
plays other audio streams. Mixing bus can also play other mixing busses. Like any other audio
stream, mixing bus has volume, panning and filters.

Only one instance of a mixing bus can play at the same time, however; trying to play the same
bus several times stops the earlier instance.

While a mixing bus doesn’t generate audio by itself, playing it counts against the maximum
number of concurrent streams.

Mixing busses are protected by default (i.e, won’t stop playing if maximum number of concurrent
streams is reached).

To play a stream through the mixing bus, use the bus play() command.

in t bushandle = gSoloud . play (gBus) ; // Play the bus
gSoloud . setVolume (bushandle , 0.5 f) ; // Set bus volume

in t fxhandle = gBus . play (gSoundEffect) ; // Play sound ef fect through bus
gSoloud . setVolume (fxhandle , 0.5 f) ; // set sound ef fect volume

SoLoud Audio Engine - http://soloud-audio.com 43

21 SoLoud::Filter

Filters can be used to modify the sound some way. Typical uses for a filter are to create
environmental effects, like echo, or to modify the way the speech synthesizer sounds like.

Like audio sources, filters are implemented with two classes; Filter and FilterInstance. These
are, however, typically much simpler than those derived from the AudioSource and AudioIn-
stance classes.

21.1 Filter class
c las s Example : public F i l t e r
{
public :

v i r tua l F i l t e r I n s t ance * create Instance () ;
} ;

As with audio sources, the only required function is the createInstance().

21.2 FilterInstance class
c las s ExampleInstance : public F i l t e r I n s t ance
{
public :

v i r tua l void in i tParams (in t aNumParams) ;

v i r tua l void updateParams (f l oa t aTime) ;

v i r tua l void f i l t e r (
f l oa t * aBuffer , in t aSamples ,
in t aChannels , f l oa t aSamplerate ,
f l oa t aTime) ;

v i r tua l void f i l t e rChanne l (
f l oa t * aBuffer , in t aSamples ,
f l oa t aSamplerate , f l oa t aTime ,
in t aChannel , in t aChannels) ;

v i r tua l f l oa t getF i l terParameter (
in t aAt t r ibute Id) ;

v i r tua l void setF i l terParameter (
in t aAtt r ibute Id , f l oa t aValue) ;

v i r tua l void fadeFi l terParameter (
in t aAtt r ibute Id , f l oa t aTo ,
f l oa t aTime , f l oa t aStartTime) ;

v i r tua l void osc i l l a teF i l t e rPa ramete r (
in t aAtt r ibute Id , f l oa t aFrom ,
f l oa t aTo , f l oa t aTime ,
f l oa t aStartTime) ;

} ;

SoLoud Audio Engine - http://soloud-audio.com 44

The filter instance has no mandatory functions, but you may want to implement either filter()
or filterChannel() to do some actual work.

21.3 FilterInstance.initParams

You should call this in the constructor of your filter instance, with the number of parameters
your filter has. By convention, the first parameter should be the wet/dry parameter, where
value 1 outputs fully filtered and 0 completely original sound.

21.4 FilterInstance.updateParams

You should call this function in your filter or filterChannel functions to update fader values.

The mNumParams member contains the parameter count.

The mParamChanged member is bit-encoded field showing which parameters have changed. If
you want to know whether parameter 3 has changed, for instance, you could do:

mParamChanged = 0;
updateParams (aTime) ;
i f (mParamChanged & (1 << 3)) // param 3 changed

Finally, mParam array contains the parameter values, and mParamFader array contains the
faders for the parameters.

21.5 FilterInstance.filter()

The filter() function is the main workhorse of a filter. It gets a buffer of samples, channel
count, samplerate and current stream time, and is expected to overwrite the samples with
filtered ones.

If channel count is not one, the layout of the buffer is such that the first channel’s samples
come first, followed by the second channel’s samples, etc.

So if dealing with stereo samples, aBuffer first has aSamples floats for the first channel, followed
by aSamples floats for the second channel.

The default implementation calls filterChannel for every channel in the buffer.

21.6 FilterInstance.filterChannel()

Most filters are simpler to write on a channel-by-channel basis, so that they only deal with mono
samples. In this case, you may want to use the filterChannel() function instead. The default
implementation of filter() calls the filterChannel() for every channel in the source.

21.7 FilterInstance.getFilterParameter()

This function is needed to support the changing of live filter parameters. The default imple-
mentation uses the mParam array.

Unless you do something unexpected, you shouldn’t need to touch this function.

SoLoud Audio Engine - http://soloud-audio.com 45

21.8 FilterInstance.setFilterParameter()

This function is needed to support the changing of live filter parameters. The default imple-
mentation uses the mParam array.

Unless you do something unexpected, you shouldn’t need to touch this function.

21.9 FilterInstance.fadeFilterParameter()

This function is needed to support the changing of live filter parameters. The default imple-
mentation uses the mParamFader array.

Unless you do something unexpected, you shouldn’t need to touch this function.

21.10 FilterInstance.oscillateFilterParameter()

This function is needed to support the changing of live filter parameters. The default imple-
mentation uses the mParamFader array.

Unless you do something unexpected, you shouldn’t need to touch this function.

SoLoud Audio Engine - http://soloud-audio.com 46

22 SoLoud::BiquadResonantFilter

The biquad resonant filter is a surprisingly cheap way to implement low and high pass filters,
as well as some kind of band bass filter.

The implementation in SoLoud is based on “Using the Biquad Resonant Filter”, Phil Burk, Game
Programming Gems 3, p. 606.

The filter has three parameters - sample rate, cutoff frequency and resonance. These can also
be adjusted on live streams, for instance to fade the low pass filter cutoff frequency for a
outdoors/indoors transition effect.

The resonance parameter adjusts the sharpness (or bandwidth) of the cutoff.

// Set up low−pass f i l t e r
gBQRFi lter . setParams (SoLoud : : BiquadResonantFi l ter : : LOWPASS, 44100 , 500 , 2) ;
// Set the f i l t e r as the second f i l t e r of the bus
gBus . s e t F i l t e r (1 , &gBQRFi lter) ;

It’s also possible to set, fade or oscillate the parameters of a “live” filter

gSoloud . fadeFi l terParameter (
gMusicHandle , // Sound handle
0 , // F i r s t f i l t e r
SoLoud : : BiquadResonantFi l ter : : FREQUENCY, // What to adjust
2000 , // Target value
3) ; // Time in seconds

Currently, four parameters can be adjusted:

Parameter Description

WET Filter’s wet signal; 1.0f for fully filtered, 0.0f for original, 0.5f for half and half.

SAMPLERATE Filter’s samplerate parameter

FREQUENCY Filter’s cutoff frequency

RESONANCE Filter’s resonance - higher means sharper cutoff

SoLoud Audio Engine - http://soloud-audio.com 47

23 SoLoud::EchoFilter

The echo filter in SoLoud is a very simple one. When the sound starts to play, the echo filter
allocates a buffer to contain the echo samples, and loops through this until the sound ends.

The filter does not support changing of parameters on the fly, nor does it take changing of
relative play speed into account.

There are two parameters - delay and decay. Delay is the time in seconds until the echo, and
decay is multiplier for the echo. If the multiplier is outside the [0..1[range, the results are
unpredictable.

// Set up echo f i l t e r
gEchoF i l te r . setParams (0.5 f , 0.5 f) ;
// Set the f i l t e r as the f i r s t f i l t e r of the bus
gBus . s e t F i l t e r (0 , &gEchoF i l te r) ;

SoLoud Audio Engine - http://soloud-audio.com 48

24 SoLoud::FFTFilter

The FFT filter is a simple voice-breaking filter that uses FFT and inverse FFT.

The filter exists mainly to adjust the speech synthesizer’s voice in strange ways. It can also be
used as basis for other FFT-based filters.

The filter does not support changing of parameters on the fly, nor does it take changing of
relative play speed into account.

There are three parameters, shift, combine and scale. Finding usable results from the filter
can be done mainly through trial and error. The combine tells the filter how to combine the
wet and dry signals - OVER uses wet signal directly, SUBTRACT subtracts the wet signal from
the dry, and MULTIPLY multiplies them together.

Scale exists because the resulting volume level can be all over the place.

// Set up echo f i l t e r
gFFTF i l te r . setParams (−15, FFTF i l te r : : SUBTRACT , 0.002 f) ;
// Set the f i l t e r as the f i r s t f i l t e r of the speech
gSpeech . s e t F i l t e r (0 , &gFFTF i l te r) ;

SoLoud Audio Engine - http://soloud-audio.com 49

25 SoLoud::LofiFilter

The lofi filter is a signal degrading filter. You can adjust both the bit depth and the sample rate
of the output, and these parameters can also be adjusted (and even faded) on the fly.

// Set up low−pass f i l t e r
g L o f i F i l t e r . setParams (8000 , 5) ;
// Set the f i l t e r as the f i r s t f i l t e r of the bus
gBus . s e t F i l t e r (0 , &g L o f i F i l t e r) ;

It’s also possible to set, fade or oscillate the parameters of a “live” filter

gSoloud . fadeFi l terParameter (
gMusicHandle , // Sound handle
0 , // F i r s t f i l t e r
SoLoud : : L o f i F i l t e r : : BITDEPTH , // What to adjust
2 , // Target value
3) ; // Time in seconds

Currently, four parameters can be adjusted:

Parameter Description

WET Filter’s wet signal; 1.0f for fully filtered, 0.0f for original, 0.5f for half and half.

SAMPLERATE Filter’s samplerate parameter

BITDEPTH Filter’s bit-depth parameter

SoLoud Audio Engine - http://soloud-audio.com 50

26 Back-ends

SoLoud needs a back-end to play audio out. SoLoud ships with a bunch of back-ends with various
levels of stability and latency. Creating new back-ends is relatively simple.

SoLoud speaks with the back-end with only a couple of functions, in addition to the optional
mutex function pointers.

Studying the existing back-end implementations’ source code, in addition to this page, will help
creating new ones.

26.1 Soloud.postinit()

The back-end should call Soloud.postinit() once it knows what it can do.

void po s t i n i t (in t aSamplerate , // Sample rate , in Hz
in t aBufferS ize , // Buffer s ize , in samples
in t aFlags) ; // F lags

The channels and flags most likely come directly from the application, while sample rate and
buffer size may depend on how the back-end does things. The buffer size should be themaximum
number of samples the back-end requests on one call. Making it bigger doesn’t affect latency,
but causes SoLoud to create larger than necessary internal mixing buffers.

26.2 Soloud.mix()

The back-end can call the mix function to request a number of stereo samples from SoLoud.
The samples will be in float format, and the back-end is responsible for converting them to the
desired output format.

void mix (f l oa t * aBuffer , // Dest inat ion buffer
in t aSamples) ; // Number of requested stereo samples

If the number of samples exceeds the buffer size set at init, the result is undefined (most likely
a crash).

26.3 Soloud.mBackendData

This void pointer is free for the back-end to use in any way it wants. It may be a convenient
place to store any buffers and other information it needs to keep around.

26.4 Soloud.mLockMutexFunc / Soloud.mUnlockMutexFunc

These function pointers point to functions which should lock and unlock a mutex. If they are
left as NULL, they will not be called.

If they’re not implemented, SoLoud will not be thread safe. This means that some shared
resources, such as the channel data, may be accessed by several threads at the same time. In
the worst case one thread may delete an object while another is accessing it.

SoLoud Audio Engine - http://soloud-audio.com 51

26.5 Soloud.mMutex

Pointer to mutex data. The pointer is also passed to the lock/unlock mutex functions as a
parameter.

26.6 Soloud.mBackendCleanupFunc

This function pointer is used by SoLoud to signal the back-end to perform cleanup; stop any
threads, free any resources, etc. If NULL, not called, but may result in resource leaks and quite
possibly crashes.

26.7 Different back-ends

This is a non-exhaustive list of back-ends and notes regarding them.

• SDL

– Most tested, primary development platform
– Cross-platform
– Low latency

• PortAudio

– Cross-platform
– Low latency

• Windows multimedia

– Simplest back-end for Windows-only programs

• oss (/dev/dsp)

– Simplest back-end for Linux-only programs
– Experimental

• OpenAL

– Experimental
– High latency; if this is your only option, you’re probably better off using OpenAL
directly.

• WASAPI

– Experimental

• XAudio2

– Experimental

SoLoud Audio Engine - http://soloud-audio.com 52

	Introduction
	How Easy?
	How Free?
	How Powerful?
	There's a Catch, Right?

	Legal
	SoLoud Proper
	OGG Support
	Speech Synthesizer
	Fast Fourier Transform (FFT)
	Sfxr
	Libmodplug

	Quick Start
	Download SoLoud
	Add files to your project
	Include files
	Variables
	Initialize SoLoud
	Set up sound sources
	Play sounds
	Take control of the sound
	Cleanup
	Enjoy

	Premake
	Concepts
	Back end
	Channel
	Stream
	Clipping
	Sample
	Sample Rate
	Hz
	Play Speed
	Relative Play Speed
	Resampling
	Pan
	Handle
	Sound Source and Instance
	Latency
	Filter
	Mixing Bus

	Frequently Asked Questions
	What does it play?
	What dependencies does it have?
	Is there a DLL / C-Interface?
	What's the animal in the logo?
	Is there a mailing list?
	Are these real questions?

	Examples
	simplest
	multimusic
	piano
	mixbusses
	env

	``C''-api / DLL
	Codegen
	API

	Core: Basics
	SoLoud::Soloud Object
	Soloud.play()
	Soloud.seek()
	Soloud.stop()
	Soloud.stopAll()
	Soloud.stopSound()
	Soloud.setGlobalVolume() / Soloud.getGlobalVolume()
	Soloud.setPostClipScaler() / Soloud.getPostClipScaler()

	Core: Attributes
	Soloud.getVolume() / Soloud.setVolume()
	Soloud.getPan() / Soloud.setPan()
	Soloud.setPanAbsolute()
	Soloud.getSamplerate() / Soloud.setSamplerate()
	Soloud.getRelativePlaySpeed() / Soloud.setRelativePlaySpeed()
	Soloud.getProtectChannel() / Soloud.setProtectChannel()
	Soloud.getPause() / Soloud.setPause()
	Soloud.setPauseAll()
	Soloud.setFilterParameter()
	Soloud.getFilterParameter()

	Core: Faders
	Overview
	Soloud.fadeVolume()
	Soloud.fadePan()
	Soloud.fadeRelativePlaySpeed()
	Soloud.fadeGlobalVolume()
	Soloud.schedulePause()
	Soloud.scheduleStop()
	Soloud.oscillateVolume()
	Soloud.oscillatePan()
	Soloud.oscillateRelativePlaySpeed()
	Soloud.oscillateGlobalVolume()
	Soloud.fadeFilterParameter()
	Soloud.oscillateFilterParameter()

	Core: Misc
	Soloud.getStreamTime()
	Soloud.isValidChannelHandle()
	Soloud.getActiveVoiceCount()
	Soloud.setGlobalFilter()
	Soloud.calcFFT()
	Soloud.getWave()
	Soloud.getVersion()

	SoLoud::AudioSource
	AudioSource.setLooping()
	AudioSource.setFilter()
	AudioSource.setSingleInstance()

	SoLoud::Wav
	Wav.load()
	Wav.loadMem()

	SoLoud::WavStream
	WavStream.load()

	SoLoud::Speech
	Speech.setText()

	SoLoud::Sfxr
	Sfxr.loadPreset()
	Sfxr.loadParams()

	SoLoud::Modplug
	Modplug.load()

	Creating New Audio Sources
	AudioSource class
	AudioSource.createInstance()
	AudioSourceInstance class
	AudioSourceInstance.getAudio()
	AudioSourceInstance.hasEnded()
	AudioSourceInstance.seek()
	AudioSourceInstance.rewind()

	SoLoud::Bus
	SoLoud::Filter
	Filter class
	FilterInstance class
	FilterInstance.initParams
	FilterInstance.updateParams
	FilterInstance.filter()
	FilterInstance.filterChannel()
	FilterInstance.getFilterParameter()
	FilterInstance.setFilterParameter()
	FilterInstance.fadeFilterParameter()
	FilterInstance.oscillateFilterParameter()

	SoLoud::BiquadResonantFilter
	SoLoud::EchoFilter
	SoLoud::FFTFilter
	SoLoud::LofiFilter
	Back-ends
	Soloud.postinit()
	Soloud.mix()
	Soloud.mBackendData
	Soloud.mLockMutexFunc / Soloud.mUnlockMutexFunc
	Soloud.mMutex
	Soloud.mBackendCleanupFunc
	Different back-ends

